SYNTHESIS OF AN OPTICALLY ACTIVE 138-METHYL 148-HYDROXY STEROID VIA BASE-CATALYZED REACTIONS

Réjean Ruel and Pierre Deslongchamps*

Laboratoire de synthèse organique, Département de chimie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1

ABSTRACT: The synthesis of optically active 14β -hydroxy steroid 9 is reported. This steroid is obtained in only two steps from chiral precursors 6 and 7 via anionic cycloaddition followed by base-catalyzed aldol reaction of triketone 8.

We have previously reported the one-step stereocontrolled synthesis of a 13α methyl 14α -hydroxy steroid via a new anionic polycyclization method.¹ The configuration of the C₁₃ and C₁₄ carbon centers in this steroid was opposite to the 13ß-methyl 14ß-hydroxy arrangement normally found in cardioactive steroids.² Further investigation led us to conceive a very short synthesis of a steroid bearing the correct C₁₃ and C₁₄ stereocenters. We now wish to report this work, namely, the preparation of (+)-13ß-methyl 14ß-hydroxy steroid 9 (Scheme 2). This compound was obtained from aldol condensation of 8 which was produced from the base-catalyzed cycloaddition³ of chiral precursors 6 and 7.

The substituted Nazarov reagent 6 was obtained by the sequence described in Scheme 1. Ozonolysis of the known chiral bicyclic enone 1^4 gave the keto acid 2^5 according to the procedure reported by Mori and collaborators.⁶ Selective borane reduction of acid 2 followed by PCC⁷ oxydation led to the aldehyde 3 ($[\alpha]_D$ +43.1°(c 4)). This aldehyde was treated with (formylmethylene)triphenylphosphorane⁸ to give *trans* unsaturated aldehyde 4 ($[\alpha]_D$ +65.9° (c 1)). Treatment of aldehyde 4 with the Reformatsky reagent of *t*-butylbromoacetate gave *trans* diastereomeric allylic alcohols 5 (1:1) which were converted into the desired substituted Nazarov reagent 6 with manganese dioxide.

The triketone compound 8 was then obtained from selective decarboxylation of the cycloaddition product resulting from the reaction of precursors 6 and 7⁹ with cesium carbonate in chloroform. As in our preceding model study,⁹ the cycloaddition (70% yield) led to a (85:15) diastereomeric mixture in which the major compound 8 ([α]_D +83.6° (c 1)) was easily separated. The cesium carbonate-catalyzed aldol condensation was then carried out in acetonitrile and produced the steroid derivative 9 as the

(e) MnO₂, AcOEt, r.t. (51% from 3).

sole product although in low yield (32%). When the purified steroid 9 was resubmitted to the same conditions (Cs₂CO₃, CH₃CN, reflux), a (1:1) mixture of 8 and 9 was obtained. This result clearly indicated the reversibility of the aldol reaction. The general structure and the *cis-anti-trans-syn-cis* ring junction stereochemistry of 14βhydroxy steroid 9 were rigorously established by X-ray analysis.¹⁰

When a benzene solution of triketone 8 was heated in the presence of p-toluenesulfonic acid (PTSA), the *bis*-enone 10 ($[\alpha]_D$ -106.4° (c 1)) was produced in 77% yield. Thus, not only did dehydration of the β -hydroxy ketone occur, but the initial C₃-isopropenyl substituent was also transformed into the 2-cyclohexene-1-one unit in 10. Interestingly, selective protection of the C₇ carbonyl group was achieved on *bis*-enone 10. Thus, when treated with excess ethylene glycol and PTSA, 10 was converted to ketal 11 ($[\alpha]_D$ +17.0° (c 2)) in 71% yield. Importantly, this protection step allowed the expected¹¹ isomerization of the C₈-C₁₄ double bond to the C₁₄-C₁₅ position. Furthermore, the C₂-C₃ and C₁₄-C₁₅ double bonds were then differentiated. The latter was in fact selectively oxidized with *m*-CPBA to give epoxide 12 ($[\alpha]_D$ +11.6° (c 1)) in 81% yield.

SCHEME 2: (a) i) 7 in CHCl₃ was added to 6 and Cs₂CO₃ in CHCl₃, r.t., ii) TFA, PhH, reflux (60%);

- (b) Cs₂CO₃, CH₃CN, reflux (32%; 47% based on recovered 8);
- (c) PTSA, PhH, reflux (77%);
- (d) (CH₂OH)₂, PTSA, PhH, reflux (71%);
- (e) *m*-CPBA, CH_2Cl_2 (81%).

In conclusion, we are reporting a very simple synthesis of an optically active 148-hydroxy steroid as well as other steroid derivatives. The absolute stereochemistry of the C/D ring junction in 9 is exactly that found in natural 14-hydroxy steroids. We are currently trying to find simple ways to shift the equilibrium aldol reaction (8 \rightarrow 9) in order to improve the so far modest yield. Work directed toward the synthesis of optically active steroids bearing the general C/D *trans* ring junction has also been undertaken in our laboratory.¹²

REFERENCES AND NOTES

- (1) J.-F. Lavallée and P. Deslongchamps. Tetrahedron Lett. 29, 6033 (1988).
- (2) S. Lociuro, T.Y.R. Tsai, and K. Wiesner. *Tetrahedron* 44, 35 (1988) and references cited therein.
- (3) J.-F. Lavallée and P. Deslongchamps. Tetrahedron Lett. 29, 5117 (1988).
- (4) Z.G. Hajos, D.R. Parrish, and E.P. Oliveto. Tetrahedron 24, 2039 (1968).
- (5) All optical rotation values reported were determined at 25°C in CHCl₃: for the methyl ester derivative 2 (x = OMe) : $[\alpha]_D$ +44.4° (c 3).
- (6) T. Kitahara, H. Kurata, T. Matsuoka, and K. Mori. Tetrahedron 41, 5475 (1985).
- (7) E.J. Corey and J.W. Suggs. Tetrahedron Lett., 2647 (1975).
- (8) S. Trippet and D.M. Walker. J. Chem. Soc., 1266 (1961).
- (9) For the cycloadditon of the (-)-carvone derived (-)-7 and a methyl substituted Nazarov reagent see: R.Ruel, K.T. Hogan, and P. Deslongchamps. *Tetrahedron Lett.* Submitted.
- (10) X-ray analysis was carried out by M. Drouin and Dr A.G. Michel, Département de chimie, Université de Sherbrooke; m.p. 156-157°C; exact mass calculated for C₃₀H₃₆O₇: 508.2461; found: 508.2472; [α]_D +61.5° (c 1); ¹H nmr (CDCl₃, 250 MHz) δ ppm: 8.08, 7.53, 7.42 (5H, 3 m, C₆H₅), 5.01 (1H, m, 17α-H), 4.84, 4.73 (2H, 2 s, H olefin), 4.01 (1H, s, OH), 3.81 (3H, s, COOMe), 3.19 (1H, m, 5B-H), 2.79 (1H, d, J=13.6 Hz, 8B-H), 2.64-1.35 (16H, m), 1.72 (3H, s, Me), 1.07 (3H, s, 13B-Me); ¹³C nmr (CDCl₃, 62.9 MHz) δ ppm: 214.8, 206.3, 171.5, 166.5, 146.0, 132.7, 129.6, 128.3, 111.1, 84.1, 82.9, 82.3, 62.8, 52.7, 52.4, 50.5, 45.2, 42.5, 40.8, 36.6, 35.1, 34.1, 32.6, 28.9, 28.0, 23.5, 20.7, 13.2.
- (11) J.N. De Leeuw, E.R. De Waard, T. Beetz, and H.O. Huisman. Recl. Trav. Chim. Pays Bas 92, 1047 (1973) and references cited theiren.
- (12) Financial support of this work by NSERCC (Ottawa) and "FCAR" (Québec) is gratefully acknowledged.

(Received in USA 24 April 1990)